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Abstract-The polar Mohr diagram is a useful tool for strain analysis in general shear zones. Polar Mohr diagrams 
for general shear zones can be constructed with the following measured data: (a) the stretches of two line markers 
which were originally perpendicular to each other; (b) the ratio of their stretches and the principal directions; (c) the 
stretches in the shear direction and in the principal direction; and (d) the stretches in any two directions. With these 
diagrams, the angle between eigenvectors, v, can be obtained, and the kinematic vorticity number W, in the shear 
zone and the ratio of pure shear rate B to simple shear rate 9 during deformation can be computed with the formulae 
W, = cos v and W, = cos[cot(2s/y)]. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Most natural shear zones are probably formed by general 
shear which combines pure shear and orthogonal simple 
shear parallel to the shear zone’s boundary (Matthews et 
al., 1974; De Paor, 1983; Simpson and De Paor, 1993). 
The ratio of pure shear rate i to simple shear rate i/ in a 
general shear zone can be expressed by the kinematic 
vorticity number W, (Truesdell, 1954) with the formula 
wk = cos[cotQs/v)], and the angle v between the two 
eigenvectors el and e2 in a deformation field can be used 
to compute Wk using the formula Wk = cos v (Bobyarch- 
ick, 1986). Thus, v = 90” and wk = 0 stand for pure shear 
(Fig. la); v = 0” and Wk = 1 represents simple shear (Fig. 
lb); 0” <v<90” and O< wk< 1 corresponds to general 
shear (Fig. lc & d) (Means et al., 1980). The polar Mohr 
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Fig. 1. The relationship between the angle between eigenvectors, v, and 
deformation histories. (a) Pure shear. (b) Simple shear. (c) General shear 
which thins the shear zone. (d) General shear which thickens the shear 

zone. 

diagram (De Paor, 1983; Simpson and De Paor, 1993), 
which evolved from the stretch Mohr circle (Choi and 
Hsii, 1971; De Paor, 1981; Means, 1982, 1983), is a useful 
tool for determination of the angle v and other strain 
analyses in a general shear zone. The polar Mohr 
diagram uses polar co-ordinates to express strain and 
can be applied to off-axis analyses, making it suitable for 
both coaxial and non-coaxial deformations. It combines 
the Mohr space and geographic space, and provides 
many advantages for strain analyses. Polar Mohr 
constructions for general shear zones are the key to 
these analyses and a procedure has been put forward by 
Simpson and De Paor (1993). Three more practical 
methods are presented in this paper in order to expand 
the application of polar Mohr analysis. 

CONSTRUCTION OF POLAR MOHR DIAGRAMS 
FOR GENERAL SHEAR ZONES 

Simpson and De Paor (1993) have presented a basic 
method for construction of a polar Mohr diagram using 
the measured stretch rl along the shear direction, and the 
stretch and angular shear (SO, $0) of a marker originally 
perpendicular to the shear zone’s boundary (Fig. 2a). 
Zheng and Wang (1995) constructed a polar Mohr 
diagram using this method for the shear zone in the 
Yagan metamorphic core complex in north China, and 
the results from it coincided with the real measured data. 
The markers employed in this method, however, are not 
commonly available in natural shear zones and it is 
difficult to know what line was initially orthogonal to the 
boundary. The following sections describe some more 
practical methods. 
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Fig. 2. Polar Mohr diagrams and their construction. (a) A polar Mohr diagram constructed with the stretches of two 
originally perpendicular strain markers, and the expression of stretch and angular shear (after Simpson and De Paor, 1993). 
Points (r,, 0) and (5~~0) represent the deformation (e is the stretch) in the direction of the two eigenvectors, and point (r,, 0) 
corresponds to the shear direction. Point (So, $0) is the anchor point which represents the deformation of a marker originally 
normal to the shear plane. P (S, 4) presents the deformation in a given direction. S is the stretch and C$ is the rotation with 
respect to the reference axis (the normal of the shear plane). (b), (c) and (d) Polar Mohr circles constructed with different 

methods (see text). 

A polar Mohr diagram constructed with the measured 
stretch ratio, Rs. and the angle c1 between the maximum 

principal stretch and the shear direction 

Using 0 as the origin (Fig. 2b), draw a line O-l-& (O- 
1 and 0-Rs are equal to unit length and the stretch ratio 
Rs, respectively) and the Mohr circle with I-Rs as a 
diameter. From the point Rs, draw a line Rs-0’ which 
makes the angle CI with O-l-R,+ The intersection of the 
circle and line R&Y is point (&, 0). The line joining the 
origin and point (52, 0) is the reference axis which is 
normal to the shear zone’s boundary, and the other 
intersection with the circle is point (<i, 0). The normal line 
of the axis at point (&, 0) intersects the circle at the 
anchor point (So, $0). It should be noted that since no 
measure of area change is available, this circle is for a 
strain ellipse with a long axis Rs and a short axis of 1. 

Construction of a polar Mohr diagram using the stretch (1 
along the shear direction, maximumprincipalstretch S1 and 
the angle LX between S1 and the shear direction 

Plot point (ti, 0) on the reference axis and draw a line 
on one side from this point which makes an angle 90” -cc 
with the axis (Fig. 2~). Draw an arc of centre 0 and radius 
Si on the same side; the arc intersects the above line at Si 

making sure that O-S1 = S, (the maximum stretch). The 
normal bisector of line ({i, OkSi intersects O-S, at point 
0’. Using point 0’ as the centre, draw a circle passing 
through points Si and (ti, 0). This circle meets the 
reference axis at another point (&, 0). The normal line of 
the axis at this point intersects the circle at the anchor 

point GO, $0). 

A polar Mohr diagram constructed with the stretches SA 
and SB in any two directions, the angle nr between them, and 
their angles tIA#‘and 6B’ with the shear direction 

Two sheets of tracing paper and a net with a series of 
concentric circles are needed, e.g. a polar stereonet. On a 
tracing sheet, draw a line and take a segment OA = S,. 
Draw line A-A” through point A making angle 
OAA” = eA’ (Fig. 2d). Similarly, on the other sheet, first 
draw a line and take a segment OB = Sn, draw line B-B” 
through point B making angle OBB”=&‘, and then, 
draw line B-0’ from point B making angle OBO’ = q’ 
(Fig. 2d). Pin the two sheets at point 0 and place them on 
the net. Find a circle that passes points A, B and the 
intersection of A-A” and B-B”, and make sure that the 
circle, lines B-O’ and 0-A meet at a point A’ (Fig. 2d). 
The intersection of lines A-A” and B-B” is point (&, 0), 
and the line from point 0 passing through (52, 0) is the 
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Fig. 3. Application of the polar Mohr diagram. Determining (a) the principal stretches and directions, and (b) the 
deformation (stretch and angular shear) in a given direction. (c) The angle j3 between a given line and shear direction before 

deformation and its rotation q5 during deformation (after Simpson and De Paor, 1993). 

reference axis. The anchor point and point (51, 0) are 
obtained on the circle as stated above (Fig. 2d). 

STRAIN ANALYSES WITH THE POLAR MOHR 
DIAGRAM FOR GENERAL SHEAR ZONES 

With the polar Mohr diagrams constructed using the 
above methods, the principal stretches S1 and & (Fig. 
3a), the original angle p of a given line (having a 
deformed angle /?) with the shear direction and its 
rotation C$ during deformation can be measured (Fig. 
3c) (Simpson and De Paor, 1993). There are more 
measurements, in particular angle v, which can be made 
using the diagram. 

The principal stretch direction 

As in Fig. 3(a), the line passing through point & and 
the anchor point represents the direction of maximum 
principal stretch axis. Between this line and the normal 
line of the reference axis is the angle a of the principal 
direction with the shear direction. 

The stretch and angular shear in a given direction 

Draw a line through the anchor point and parallel with 
the given direction (Fig. 3b). This line meets the circle at 
point A and another line from the origin, passing through 
point A, intersects the circle again at point P which 

represents the stretch and angular shear in the given 
direction. The length of O-P is the stretch in the given 
direction. Draw diameter P-P’, and lines 0-P and O-P’. 
The angle POP is the angular shear tj of the given direction. 

Angle v and the kinematic vorticity number Wk for a 
general shear zone 

Usually, a polar Mohr circle intersects the reference 
axis at two points ({r, 0) and (52, 0) which represent the 
two eigenvectors of the shear zone. Point ((1, 0) equates 
with the shear direction. The line linking the anchor point 
and point (&, 0) is normal to the reference axis. This line 
and diameter (Se, $0) - (ci, 0) make an angle which is the 
angle v between the two eigenvectors. W, is computed 
with the angle v using the formula W, =cos v. If the 
centre of the circle falls on the reference axis and v = 90”, 
the case represents pure shear (Fig. 4c & d). If the circle is 
tangential with the reference axis and v=O’, it corre- 
sponds to simple shear (Fig. 4e). 

Analysis of changes in thickness 

A shear zone has been thinned if ti> 52, which means 
that it formed in an extensional setting (Fig. 4a). If 
51 c &. the shear zone has been thickened and formed in a 
compressive regime (Fig. 4b). The thickness is constant 
during simple shearing, when <I= 52 (Fig. 4e). Suppose 
the present thickness of the shear zone is T,, then its 
original thickness TO = T,/&. 
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Fig. 4. Obtaining angle Y and an explanation of deformation history. (a) The case for a thinned general shear zone. (b) A 
thickened general shear zone (a and b are after Simpson and De Paor, 1993). (c) and (d) Special cases of coaxial deformation (c 

is after De Paor, 1987). (e) A polar Mohr circle representing simple shearing. 
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